Chapitre n°25: Probabilités sur un univers fini

Questions de cours posées en khôlles

Question 1.

Lois de probabilité : définition et démonstration des propriétés fondamentales.

Réponse

Une (loi de) probabilité sur Ω est une application $P: \mathcal{P}(\Omega) \to [0;1]$ vérifiant :

- $P(\emptyset) = 0$ et $P(\Omega) = 1$
- si A et B sont des événements incompatibles, alors $P(A \cup B) = P(A) + P(B)$

Voici les propriétés de base d'une loi de probabilité.

- 1) Pour toute partie A de Ω , on a $P(\overline{A}) = 1 P(A)$.
- 2) Pour toutes parties A et B de Ω telles que A \subset B, on a $P(A) \leq P(B)$.
- 3) Pour toutes parties A et B de Ω , on a $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

On les démontre en utilisant la définition précédente :

1)
$$\Omega = A \cup \overline{A}$$
 et $A \cap \overline{A} = \emptyset$ donc $P(\Omega) = 1 = P(A) + P(\overline{A})$ d'où $P(\overline{A}) = 1 - P(A)$.

2) Soit
$$C = B \setminus A$$
. Alors $B = A \cup C$ et $A \cap C = \emptyset$, d'où $P(B) = P(A) + P(C) \ge P(A)$.

3) On pose
$$A'=A\setminus B$$
, $B'=B\setminus A$ et $C'=A\cap B$. Alors $A=A'\cup C'$, $B=B'\cup C'$ et
$$A\cup B=A'\cup B'\cup C'=A'\cup B$$

Les ensembles A', B' et C' étant deux à deux disjoints, on en déduit que

$$P(A) = P(A') + P(C') \qquad \text{et} \qquad P(A \cup B) = P(A') + P(B)$$

si bien que
$$P(A \cup B) = P(A) - P(C') + P(B) = P(A) + P(B) - P(A \cap B)$$
.

Il est fortement recommandé de faire un dessin pour illustrer clairement les relations entre les différents ensembles qui interviennent dans les démonstrations.

Question 2.

Définir les probabilités conditionnées.

Énoncer et démontrer la formule de Bayes.

Réponse

Soit A un événement de Ω de probabilité non nulle. On appelle probabilité **conditionnée par A** l'application $P_A: \mathscr{P}(\Omega) \longrightarrow [0;1]$ définie par

Pour tout
$$B \in \mathcal{P}(E)$$
, $P_A(B) = \frac{P(A \cap B)}{P(A)}$

La quantité P_A(B) se lit **probabilité de B sachant A**. C'est la probabilité que l'événement B ait lieu sachant que l'événement A a eu lieu.

Formule de Bayes

Soient A et B des événements de Ω de probabilités non nulles. Alors $P_A(B) = \frac{P(B)}{P(A)} P_B(A)$.

$$P_{A}(B) = \frac{P(B)}{P(A)} P_{B}(A).$$

En effet, $P(A \cap B) = P(B) \times P_B(A)$ si bien que

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)} = \frac{P(B) \times P_{B}(A)}{P(A)} = \frac{P(B)}{P(A)} P_{B}(A)$$

Question 3.

Donner la formule des probabilités composées.

La démontrer dans le cas de trois événements.

Réponse

Soient A_1, A_2, \ldots, A_n des événements de Ω tels que $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) \neq 0$. Alors

$$P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \times P_{A_1}(A_2) \times P_{A_1 \cap A_2}(A_3) \times \cdots \times P_{A_1 \cap A_2 \cap \cdots \cap A_{n-1}}(A_n)$$

Remarque: il faut noter (et retenir pour l'an prochain) que

$$A_1\cap A_2\cap \cdots \cap A_{n-1}\subset A_1\cap A_2\cap \cdots \cap A_{n-2}\subset \cdots \subset A_1\cap A_2\subset A_1$$

implique
$$P(A_1) \geqslant P(A_1 \cap A_2) \geqslant \ldots \geqslant P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$$

Ces probabilités étant non nulles, les différentes probabilités conditionnelles existent bien.

Plaçons-nous dans le cas n = 3. On a $A_1 \supset (A_1 \cap A_2)$ donc $P(A_1) \geqslant P(A_1 \cap A_2) > 0$.

De ce fait
$$\begin{split} P(A_1 \cap A_2 \cap A_3) &= P((A_1 \cap A_2) \cap A_3) \\ &= P(A_1 \cap A_2) \times P_{A_1 \cap A_2}(A_3) \\ &= P(A_1) \times P_{A_1}(A_2) \times P_{A_1 \cap A_2}(A_3) \end{split}$$

d'où le résultat.

Question 4.

Définir la notion de système complets d'événements.

Énoncer et démontrer la formule des probabilités totales.

Réponse

On appelle **système complet d'événements** un ensemble d'événements $\{A_1, A_2, \dots, A_n\}$ de l'univers Ω tels que :

- $\forall i \in [[1;n]], A_i \neq \emptyset$
- $\forall (i, j) \in [[1; n]]^2$, $i \neq j \Longrightarrow A_i \cap A_j = \emptyset$
- $A_1 \cup A_2 \cup \cdots \cup A_n = \Omega$

Formule des probabilités totales

Soit $\{A_1, A_2, \dots, A_n\}$ un système complet d'événements de l'espace probabilisé (Ω, P) .

- Pour tout événement B de Ω , on a $P(B) = \sum_{i=1}^{n} P(A_i \cap B)$
- Si en outre $P(A_i) > 0$ pour tout $i \in [[1; n]]$, alors $P(B) = \sum_{i=1}^{n} P_{A_i}(B) \times P(A_i)$

En effet, on a

$$B = \Omega \cap B$$

$$= (A_1 \cup A_2 \cup \dots \cup A_n) \cap B$$

$$= (A_1 \cap B) \cup (A_2 \cap B) \cup \dots (A_n \cap B)$$

De plus, les événements $A_i \cap B$ sont deux à deux incompatibles puisque pour $i \neq j$

$$(A_i \cap B) \cap (A_j \cap B) = (A_i \cap A_j) \cap B = \emptyset \cap B = \emptyset$$

Par conséquent,

$$P(B) = \sum_{i=1}^{n} P(A_i \cap B)$$

Si en outre $P(A_i) > 0$ pour tout $i \in [[1; n]]$, alors $P(A_i \cap B) = P_{A_i}(B) \times P(A_i)$ par définition des probabilités conditionnelles. On en déduit que

$$P(B) = \sum_{i=1}^{n} P_{A_i}(B) \times P(A_i)$$